979 words
5 minutes
Toward AI Excellence: Utilizing Zero to Hero for Text Generation
  1. Overview

Text generation has become a star application in Natural Language Processing (NLP). From conversational chatbots and creative writing assistants to news summarization and automatic translation, Large Language Models (LLMs) have unlocked a broad range of possibilities. Many developers and researchers hope to quickly build an end-to-end text generation system to test ideas or power real-world products.

In this article, we’ll walk through the best practices from the “Zero to Hero” series to create a fully fledged text generation pipeline, covering everything from data preparation and model fine-tuning to serving inference and deployment. By the time you finish, you’ll have a clear understanding of how to progress toward AI excellence in text generation.


  1. Why Build a Text Generation System?

2.1 Knowledge Generalization and Creativity
Thanks to their training on vast datasets, text generation models can learn abstract concepts and language patterns, enabling them to answer questions and produce creative text, such as short stories, marketing copy, or more.

2.2 Adaptable Across Various Scenarios
Whether you’re working on a customer service chatbot, an intelligent assistant, an automatic summarization tool, or a translation system, text generation can play a central role, powering solutions across different industries.

2.3 Rapid Iteration and Flexibility
Pretrained models like GPT make it possible to avoid building algorithms from scratch. You can quickly fine-tune these base models using frameworks like Transformers, allowing you to adapt the solution to your requirements with minimal overhead.


  1. Environment Setup and Project Structure

3.1 Hardware and Cloud Choices
• Local GPU or cloud-based GPU solutions (AWS, Azure, Google Cloud)
• If you have limited GPU resources, you can experiment on CPU with a smaller model to validate ideas before scaling up.

3.2 Software Stack
• Python 3.8+
• PyTorch or TensorFlow
• Hugging Face Transformers
• FastAPI or Flask (for a lightweight web API)
• Docker (optional, for deployment and reproducibility)

3.3 Example Project Layout
my_text_gen/
├── data/
│ ├── raw/
│ └── processed/
├── models/
│ ├── checkpoints/
│ └── final/
├── scripts/
│ ├── train.py
│ ├── generate.py
│ └── utils.py
├── app/
│ ├── main.py
│ └── config.py
├── tests/
│ └── test_app.py
├── requirements.txt
└── Dockerfile


  1. Data Preparation and Processing

4.1 Data Sources and Formats
• Conversational Data: Multi-turn dialogues or (context, reply) pairs for chatbot scenarios.
• News or Document Datasets: Useful for tasks such as summarization or text continuation.
• Multilingual Parallel Corpora: Essential for translation tasks.

4.2 Data Cleaning
• Remove duplicates, empty lines, or irrelevant text
• Filter out sensitive or extremely noisy content
• Use regex to handle punctuation and extra spaces

4.3 Splitting and Formatting
A common split is 80/10/10 for training, validation, and testing. Ensure the different data types are well distributed across each subset.

For example, for dialogue data in CSV format:

┌──────────────────────────────┬─────────────────────────────────────┐
│ context │ reply │
├──────────────────────────────┼─────────────────────────────────────┤
│ “Hi there, what can you do?” │ “I can handle text generation and understanding!” │
│ “What do you think of this tutorial?” │ “I believe it’s very helpful for beginners.” │
└──────────────────────────────┴─────────────────────────────────────┘


  1. Model Selection and Fine-Tuning

5.1 Common Pretrained Models
• GPT-2: Smaller in size, widely supported, perfect for initial learning and smaller projects.
• GPT-Neo / BLOOM: Scaled-up models that handle more sophisticated text generation tasks.
• Domain- or Language-Specific: For instance, models that target Chinese (e.g., ChatGLM) or other specialized domains.

5.2 Example Training Script
Below is an illustration of fine-tuning GPT-2 for text generation:

scripts/train.py#

import argparse import torch from transformers import GPT2LMHeadModel, GPT2TokenizerFast, Trainer, TrainingArguments from datasets import load_dataset

def parse_args(): parser = argparse.ArgumentParser(description=“Fine-tune GPT-2 for text generation.”) parser.add_argument(“—train_file”, type=str, required=True, help=“Path to the training CSV.”) parser.add_argument(“—val_file”, type=str, required=True, help=“Path to the validation CSV.”) parser.add_argument(“—epochs”, type=int, default=3, help=“Number of training epochs.”) parser.add_argument(“—batch_size”, type=int, default=2, help=“Batch size.”) parser.add_argument(“—lr”, type=float, default=5e-5, help=“Learning rate.”) parser.add_argument(“—output_dir”, type=str, default=“models/checkpoints”, help=“Checkpoint path.”) return parser.parse_args()

def main(): args = parse_args() dataset = load_dataset(“csv”, data_files={“train”: args.train_file, “validation”: args.val_file}) tokenizer = GPT2TokenizerFast.from_pretrained(“gpt2”) tokenizer.pad_token = tokenizer.eos_token

def tokenize_fn(examples):
texts = []
for c, r in zip(examples["context"], examples["reply"]):
text = f"<|startoftext|>{c}<|sep|>{r}<|endoftext|>"
texts.append(text)
return tokenizer(texts, truncation=True, padding="max_length", max_length=128)
ds_tokenized = dataset.map(tokenize_fn, batched=True)
ds_tokenized.set_format("torch", columns=["input_ids", "attention_mask"])
train_ds = ds_tokenized["train"]
val_ds = ds_tokenized["validation"]
model = GPT2LMHeadModel.from_pretrained("gpt2")
train_args = TrainingArguments(
output_dir=args.output_dir,
evaluation_strategy="epoch",
save_strategy="epoch",
num_train_epochs=args.epochs,
per_device_train_batch_size=args.batch_size,
per_device_eval_batch_size=args.batch_size,
learning_rate=args.lr,
load_best_model_at_end=True
)
trainer = Trainer(
model=model,
args=train_args,
train_dataset=train_ds,
eval_dataset=val_ds
)
trainer.train()
trainer.save_model(args.output_dir)

if name == “main”: main()#

5.3 Fine-Tuning Considerations
• Track both training loss and validation loss to prevent overfitting.
• Adjust learning rate and batch size to find the right balance.
• Use early stopping or manually check model quality to avoid training beyond the optimal point.


  1. Inference Pipeline and Deployment

6.1 Generation Script and Logic
scripts/generate.py#

import torch from transformers import GPT2LMHeadModel, GPT2TokenizerFast

MODEL_PATH = “models/checkpoints” tokenizer = GPT2TokenizerFast.from_pretrained(MODEL_PATH) model = GPT2LMHeadModel.from_pretrained(MODEL_PATH)

def generate_text(context, max_length=50): prompt = f”<|startoftext|>{context}<|sep|>” input_ids = tokenizer(prompt, return_tensors=“pt”).input_ids with torch.no_grad(): output_ids = model.generate( input_ids, max_length=max_length, num_beams=5, no_repeat_ngram_size=2, early_stopping=True ) result = tokenizer.decode(output_ids[0], skip_special_tokens=True) # Split out the text after our custom separator if ”<|sep|>” in result: result = result.split(”<|sep|>”)[1] if ”<|endoftext|>” in result: result = result.split(”<|endoftext|>”)[0] return result.strip()

if name == “main”: sample_context = “Hi, I’d like to learn about what you can do.” print(“Context:”, sample_context) print(“Generated:”, generate_text(sample_context))#

6.2 Building a Simple API
Below is a conceptual approach using FastAPI to provide a REST endpoint for text generation:

app/main.py#

from fastapi import FastAPI from pydantic import BaseModel from generate import generate_text

app = FastAPI()

class GenerateRequest(BaseModel): context: str max_length: int = 50

@app.post(“/generate”) def generate_endpoint(req: GenerateRequest): response_text = generate_text(req.context, max_length=req.max_length) return {“generated_text”: response_text}#

6.3 Containerization and Reproducibility
• requirements.txt or conda environment.yml to lock dependencies
• Dockerfile that copies the project, installs dependencies, and launches your API server

Example Dockerfile snippet:


FROM python:3.9-slim

WORKDIR /app COPY . /app RUN pip install —no-cache-dir -r requirements.txt

CMD [“uvicorn”, “app.main”, “—host”, “0.0.0.0”, “—port”, “8080”]#

You can then run:
docker build -t my_text_gen .
docker run -p 8080:8080 my_text_gen


  1. Conclusion and Future Directions

Building a text generation system using a “Zero to Hero” approach—from data pre-processing and model fine-tuning to inference and deployment—demonstrates just how accessible NLP innovations have become. Even with limited resources, you can rapidly prototype and iterate on text generation ideas across diverse use cases.

Potential next steps:
• Experiment with Advanced Fine-Tuning: Incorporate parameter-efficient methods like LoRA or Adapters.
• Investigate Model Compression: Use pruning, quantization, or knowledge distillation to optimize the model for production.
• Explore Larger or Specialized Models: Scale up with GPT-Neo/BLOOM or domain-specific LLMs for more challenging tasks.
• Embrace Multi-Modal Integration: Combine text with image or speech inputs to extend your applications across multiple modalities.

Toward AI Excellence: Utilizing Zero to Hero for Text Generation
https://closeaiblog.vercel.app/posts/llm-zero-to-hero/05_text-generation/
Author
CloseAI
Published at
2022-11-01
License
CC BY-NC-SA 4.0